TRANSIENT SIMULATION AND PERFORMANCE ANALYSIS OF NOVEL EVAPORATOR FOR OTEC APPLICATION

Authors

  • Eyad Abureisha Universiti Teknologi Malaysia
  • Siti Norasyiqin Abdul Latif
  • Chun Mein Soon
  • Mahadhir Mohammad
  • Chiong Meng Soon Program Kej. Aeronautik, Automotif & Samudera Sekolah Kejuruteraan Mekanikal, Fakulti Kejuruteraan Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/jtse.v12.254

Keywords:

Ocean Thermal Energy Conversion; Evaporator De-sign; Transient CFD Simulation.

Abstract

cean Thermal Energy Conversion (OTEC) harnesses the temperature difference between warm surface seawater and cold deep seawater to generate electricity. The evaporator, a key component, facilitates heat absorption and phase change in the working fluid. This study presents a transient simulation and performance analysis of a novel evaporator design for OTEC, aiming to enhance heat transfer efficiency while minimizing pressure drop. A computational fluid dynamics (CFD) model was developed using ANSYS Fluent, incorporating various mass flow rates and turbulence models. The k-omega SST model proved most effective in capturing phase change dynamics. Results show the proposed design absorbs 2 kW more thermal energy than conventional designs at scale, with an optimal flow rate of 0.01856 kg/s balancing energy absorption and pressure constraints. The maximum pressure drop was 6.19 kPa for R-22, significantly lower than traditional heat exchangers. The design improves heat transfer and reduces energy losses, enhancing OTEC system efficiency. Turbulence-enhancing modifications at the inlet were identified to further accelerate phase change without excessive pressure penalties. These advancements support more efficient Rankine cycle implementations, improving OTEC feasibility and scalability. This study contributes to the development of high-performance heat exchangers, advancing OTEC as a sustainable energy solution.

References

Masutani, S. M., & Takahashi, P. K. (2001). Ocean thermal energy conversion (OTEC). In J. H. Steele, S. A. Thorpe, & K. K. Turekian (Eds.), Encyclopedia of Ocean Sciences (pp. 1993–1999). Elsevier. https://doi.org/10.1006/rwos.2001.0031

Sanjivy, K., Raybaud, P., Hunt, J., Ferrucci, F., Baucour, P., Marc, O., & Lucas, F. (2026). Harnessing the ocean's depths: SWAC and OTEC for sustainable cooling and power – A review of technologies, applications and challenges. Renewable and Sustainable Energy Reviews, 226(A), 116253. https://doi.org/10.1016/j.rser.2025.116253

Jing, F., Wang, X., Mei, Y., & Tian, R. (2025). A comprehensive review on ocean thermal energy conversion technology: Thermodynamic optimization, multi-energy integration, and byproduct utilization. Energy Conversion and Management: X, 27, 101188. https://doi.org/10.1016/j.ecmx.2025.101188

Tinakar, A. (2013). Ocean thermal energy conversion. International Journal of Energy and Power Engineering, 2(4), 143. https://doi.org/10.11648/j.ijepe.20130204.11

Wu, Z., Feng, H., Chen, L., Xie, Z., & Cai, C. (2019). Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory. Energy, 181, 974–984. https://doi.org/10.1016/j.energy.2019.05.216

Musabikha, S., & Utama, I. K. A. P. (2017). Corrosion in the marine renewable energy: A review. International Journal of Environmental Research and Clean Energy, 7(1). http://isomase.org/IJERCE1.php

Zhang, W., Li, Y., Wu, X., & Guo, S. (2018). Review of the applied mechanical problems in ocean thermal energy conversion. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2018.05.048

Abidin, M. Z. Z., Rodhi, M. N. M., Hamzah, F., & Ghazali, N. A. (2021). Assessing biofouling in ocean thermal energy conversion (OTEC) power plant – A review. In Journal of Physics: Conference Series (Vol. 2053, No. 1, p. 012011). IOP Publishing. https://doi.org/10.1088/1742-6596/2053/1/012011

Adie, P. W., et al. (2023). Non-linear assessment of cold-water pipe (CWP) on the ocean thermal energy conversion (OTEC) installation under bending load. Procedia Structural Integrity, 142–149. https://doi.org/10.1016/j.prostr.2023.07.005

Zhang, J., Zhang, X., Zhang, Z., Zhou, P., Zhang, Y., & Yuan, H. (2022). Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect. Energy, 246, 123440. https://doi.org/10.1016/j.energy.2022.123440

Chan, W. L., & Chiong, M. S. (2023). A performance study of R717 and R22 as the working fluid for OTEC plant. In IOP Conference Series: Earth and Environmental Science (Vol. 1143, No. 1, p. 012018). https://doi.org/10.1088/1755-1315/1143/1/012018

Patil, P. M., Yadav, A. P., & Patil, P. A. (2015). Comparative study between heat transfer through laminar flow and turbulent flow. International Journal of Innovative Research in Science, Engineering and Technology, 4(4). https://doi.org/10.15680/IJIRSET.2015.0404076

AIChE. (2018). The essentials of continuous evaporation. https://www.aiche.org/cep

Ma, Q., et al. (2023). Performance improvement of OTEC-ORC and turbine based on binary zeotropic working fluid. International Journal of Chemical Engineering, 2023, Article 8892450. https://doi.org/10.1155/2023/8892450

Yasunaga, T., Miyazaki, A., Fontaine, K., & Ikegami, Y. (n.d.). Comprehensive heat exchanger performance evaluation method on ocean thermal energy conversion for maximum net power. Unpublished technical paper

Rao, B. S., Krishna, M. M., Sastry, R. C., Professor, A., & Student, P. (2014). Experimental studies on pressure drop in a sinusoidal plate heat exchanger: Effect of corrugation angle. http://www.iirct.org

Ikegami, Y., Mutair, S., & Kawabata, Y. (2015). Experimental and numerical investigations on plate-type heat exchanger performance. Open Journal of Fluid Dynamics, 5(1), 92–98. https://doi.org/10.4236/ojfd.2015.51011

Peng, J., Chen, F., Liu, L., Ge, Y., Wu, H., & Liu, W. (2020). Experimental research on plate heat exchanger in OTEC system. Journal of Applied Science and Engineering, 23(1), 21–29. https://doi.org/10.6180/jase.202003_23(1).0003

Yoon, J. I., Son, C. H., Baek, S. M., Kim, H. J., & Lee, H. S. (2014). Efficiency comparison of subcritical OTEC power cycle using various working fluids. Heat and Mass Transfer, 50(7), 985–996. https://doi.org/10.1007/s00231-014-1310-8

Xiao, C., & Gulfam, R. (2023). Opinion on ocean thermal energy conversion (OTEC). Frontiers in Energy Research. https://doi.org/10.3389/fenrg.2023.1115695

Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Pearson Education.

Adam, N. M., Attia, O., Al-Sulttani, A. O., & Mahmood, H. A. (2020). Numerical analysis for solar panel subjected with an external force to overcome adhesive force in desert areas. CFD Letters, 12(9), 60–75. https://doi.org/10.37934/cfdl.12.9.6075

Rathore, S. S., Mehta, B., Kumar, P., & Asfer, M. (2023, December). Numerical validation of Lee's evaporation model for heat pipe applications [Poster]. Indian Institute of Technology Bhilai; Indian Institute of Technology Mandi; Shaqra University.

Rocheleau, R. E. (2014). Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11) OTEC heat exchanger development and testing task 4.1 (Report No. AD1040493). Defense Technical Information Center.

Abu-Khader, M. M. (2012). Plate heat exchangers: Recent advances. Renewable and Sustainable Energy Reviews, 16(4), 1883–1891. https://doi.org/10.1016/j.rser.2012.01.009

Martins, G., Zanzi, M., Oliveira, J. L. G., & De Paiva, K. V. (2024). Structural analysis and sealing capacity of gasketed plate heat exchangers with HNBR and EPDM rubbers. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(10), 602. https://doi.org/10.1007/s40430-024-05183-4

Yasunaga, T., Noguchi, T., Morisaki, T., & Ikegami, Y. (2018). Basic heat exchanger performance evaluation method on OTEC. Journal of Marine Science and Engineering, 6(2), 32. https://doi.org/10.3390/jmse6020032

PERFORMANCE ANALYSIS OF NOVEL EVAPORATOR FOR OTEC APPLICATION

Downloads

Published

2025-12-12

How to Cite

Abureisha, E., Abdul Latif, S. N., Soon, C. M., Mohammad, M., & Meng Soon, C. (2025). TRANSIENT SIMULATION AND PERFORMANCE ANALYSIS OF NOVEL EVAPORATOR FOR OTEC APPLICATION. Journal of Transport System Engineering, 12(2), 48–60. https://doi.org/10.11113/jtse.v12.254

Issue

Section

Transport System Engineering

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.