Determining Ship Resistance Using Computational Fluid Dynamics (CFD)
Abstract
The resistance of a hull is a consequence of force between air and water which act against the movement of ship or vessel. The ship resistance is an important issue for ensuring smooth propulsion. The traditional method to predict resistance on real hull is by using towing tank model running at corresponding Froude numbers, or called towing tank experiments. Disadvantages of this method are the associated cost and the limitation on the availability of physical tanks and models for every single design. These disadvantages can be overcome by using computational fluid dynamic, or numerical simulation. The objective of the study is to calculate the total resistance and simulate flow around Wigley and DTMB 5415 hull form using computational fluid dynamic. The result obtained from the numerical simulations were found almost similar with the experimental data. The highest percentage of error were only 5.94 percent for DTMB and 5.85 percent for Wigley hull. This result shows that the study had been done correctly and achieved its main objective. Keywords : Wigley; DTMB 5415; Ship resistanceDownloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Transpot System Engineering (JTSE) belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.
Disclaimer: The views and opinions expressed in the articles are those of the authors and do not necessarily reflect the official policy or position of the JTSE. Examples of analysis performed within are only examples and they should not be utilized in real-world. Assumptions made within the analysis are not reflective of the position of any JTSE entities.