Titanium Oxide (TiO2) nanoparticle as additive for lubricants: A bibliometric analysis
DOI:
https://doi.org/10.11113/jtse.v11.212Keywords:
Titanium oxide; Nanoparticle; Additive; Lubricant; VOSviewerAbstract
Lubricant is a substance designed to minimize friction between surfaces that are in direct contact with each other although it does have certain limitations. To overcome these limitations additives are generally added to the base oil to improve the qualities like anti-wear, anti- friction, thermal properties, antioxidant Properties, etc. In view of this recent advances shown the great value of interest in nanoparticles as additives. In this paper bibliometric analysis of trend and application of metal oxide derivative i. e. Titanium Oxide (TiO2) nanoparticle as additive for different base oils has been done. The analysis is being done on the data retrieved from dimensions and google scholar restricted to research articles only. In the present analysis, various trends and co-relationships among, authors, citation, countries are discussed to understand the research trend. A total of 94 articles were examined and mapped using VOSviewer. The majority of these articles were published in "Materials Today Proceedings" and the "Wear" journal. China emerged as the leading contributor in this research domain. An article from the "Wear" journal received the highest number of citations (1368). The highest number of articles was published in the year 2021.
References
Bartels, T., Bock, W., Braun, J., Busch, C., Buss, W., Dresel, W., … Omeis, J. (2003). Lubricants and Lubrication. In Ullmann's Encyclopedia of Industrial Chemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/14356007.a15_423
Williams, J. A., & Tabor, D. (1977). The Role of Lubricants in Machining. Wear, 43(3), 275–292. https://doi.org/10.1016/0043-1648(77)90125-9
Lugt, P. M. (2009). A Review on Grease Lubrication in Rolling Bearings. Tribology Transactions, 52(4), 470–480. https://doi.org/10.1080/10402000802687940
Rawat, S. S., & Harsha, A. P. (2019). Current and Future Trends in Grease Lubrication. In J. K. Katiyar, S. Bhattacharya, V. K. Patel, & V. Kumar (Eds.), Automotive Tribology (pp. 147–182). Singapore: Springer. https://doi.org/10.1007/978-981-15-0434-1_9
Brandão, J. A., Meheux, M., Ville, F., Seabra, J. H. O., & Castro, J. (2012). Comparative overview of five gear oils in mixed and boundary film lubrication. Tribology International, 47, 50–61. https://doi.org/10.1016/j.triboint.2011.10.007
Srivyas, P. D., & Charoo, M. S. (2018). A Review on Tribological Characterization of Lubricants with Nano Additives for Automotive Applications. Tribology in Industry, 40(4), 594–623. https://doi.org/10.24874/ti.2018.40.04.08
Thampi, A. D., Prasanth, M. A., Anandu, A. P., Sneha, E., Sasidharan, B., & Rani, S. (2021). The effect of nanoparticle additives on the tribological properties of various lubricating oils – Review. Materials Today: Proceedings, 47, 4919–4924. https://doi.org/10.1016/j.matpr.2021.03.664
Singh, A., Verma, N., Mamatha, T. G., Kumar, A., Singh, S., & Kumar, K. (2021). Properties, functions and applications of commonly used lubricant additives: A review. Materials Today: Proceedings, 44, 5018–5022. https://doi.org/10.1016/j.matpr.2021.01.029
Papay, A. G. (1998). Anti-wear and extreme-pressure additives in lubricants. Lubrication Science, 10(3), 209–224. https://doi.org/10.1002/ls.3010100304
Ali, Z. A. A. A., Takhakh, A. M., & Al-Waily, M. (2022). A review of the use of nanoparticle additives in lubricants to improve its tribological properties. Materials Today: Proceedings, 52, 1442–1450. https://doi.org/10.1016/j.matpr.2021.11.193
Kumar, V. B., Sahu, A. K., & Rao, K. B. S. (2022). Development of Doped Carbon Quantum Dot-Based Nanomaterials for Lubricant Additive Applications. Lubricants, 10(7), 144. https://doi.org/10.3390/lubricants10070144
Tang, W., Zhang, Z., & Li, Y. (2021). Applications of carbon quantum dots in lubricant additives: a review. Journal of Materials Science, 56(21), 12061–12092. https://doi.org/10.1007/s10853-021-06032-8
Zilabi, S., Shareei, M., Bozorgian, A., Ahmadpour, A., & Ebrahimi, E. (2022). A review on Nanoparticle Application as an Additive in Lubricants, 4, 209–221. https://doi.org/10.22034/ajcb.2022.353097.1125
Liu, W., Qiao, X., Liu, S., & Chen, P. (2022). A Review of Nanomaterials with Different Dimensions as Lubricant Additives. Nanomaterials, 12(21), 3780. https://doi.org/10.3390/nano12213780
Senatore, A., Hong, H., D’Urso, V., & Younes, H. (2021). Tribological Behavior of Novel CNTs-Based Lubricant Grease in Steady-State and Fretting Sliding Conditions. Lubricants, 9(11), 107. https://doi.org/10.3390/lubricants9110107
Huang, H. D., Tu, J. P., Gan, L. P., & Li, C. Z. (2006). An investigation on tribological properties of graphite nanosheets as oil additive. Wear, 261(2), 140–144. https://doi.org/10.1016/j.wear.2005.09.010
Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., & Fan, R. (2004). Investigation of the Mending Effect and Mechanism of Copper Nanoparticles on a Tribologically Stressed Surface. Tribology Letters, 17(4), 961–966. https://doi.org/10.1007/s11249-004-8109-6
Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Mufti, R. A., & Zahid, R. (2016). Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research, 18(8), 223. https://doi.org/10.1007/s11051-016-3537-4
Alves, S. M., Barros, B. S., Trajano, M. F., Ribeiro, K. S. B., & Moura, E. (2013). Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International, 65, 28–36. https://doi.org/10.1016/j.triboint.2013.03.027
Hernández Battez, A., González, R., Viesca, J. L., Fernández, J. E., Díaz Fernández, J. M., Machado, A., … Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as anti-wear additive in oil lubricants. Wear, 265(3), 422–428. https://doi.org/10.1016/j.wear.2007.11.013
Waqas, M., Zahid, R., Bhutta, M. U., Khan, Z. A., & Saeed, A. (2021). A Review of Friction Performance of Lubricants with Nano Additives. Materials (Basel, Switzerland), 14(21), 6310. https://doi.org/10.3390/ma14216310
Birleanu, C., Pustan, M., Cioaza, M., Molea, A., Popa, F., & Contiu, G. (2022). Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: an experimental investigation. Scientific Reports, 12(1), 5201. https://doi.org/10.1038/s41598-022-09245-2
Wu, H., Zhao, J., Cheng, X., Xia, W., He, A., Yun, J.-H., … Jiang, Z. (2018). Friction and wear characteristics of TiO2 nano-additive water-based lubricant on ferritic stainless steel. Tribology International, 117, 24–38. https://doi.org/10.1016/j.triboint.2017.08.011
Ingole, S., Charanpahari, A., Kakade, A., Umare, S. S., Bhatt, D. V., & Menghani, J. (2013). Tribological behavior of nano TiO2 as an additive in base oil. Wear, 301, 776–785. https://doi.org/10.1016/j.wear.2013.01.037
Wu, H., Zhao, J., Xia, W., Cheng, X., He, A., Yun, J. H., … Jiang, Z. (2017). A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 109, 398–408. https://doi.org/10.1016/j.triboint.2017.01.013
Chang, L., Zhang, Z., Breidt, C., & Friedrich, K. (2005). Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear, 258(1), 141–148. https://doi.org/10.1016/j.wear.2004.09.005
Xue, Q., Liu, W., & Zhang, Z. (1997). Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear, 213(1), 29–32. https://doi.org/10.1016/S0043-1648(97)00200-7
Wu, H., Zhao, J., Xia, W., Cheng, X., He, A., Yun, J. H., … Jiang, Z. (2017). Analysis of TiO 2 nano-additive water-based lubricants in hot rolling of microalloyed steel. Journal of Manufacturing Processes, 27, 26–36. https://doi.org/10.1016/j.jmapro.2017.03.011
Zhu, Z., Sun, J., Niu, T., & Liu, N. (2015). Experimental research on tribological performance of water-based rolling liquid containing nano-TiO 2. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 229(3), 104–109. https://doi.org/10.1177/1740349914522455
Xia, W. Z., Zhao, J. W., Wu, H., Jiao, S. H., Zhao, X. M., Zhang, X. M., & Jiang, Z. Y. (2016). A Novel Nano-TiO2 Additive Oil-in-Water Lubricant for Hot Steel Rolling. Materials Science Forum, 861, 201–206. https://doi.org/10.4028/www.scientific.net/MSF.861.201
Ilie, F., & Covaliu, C. (2016). Tribological Properties of the Lubricant Containing Titanium Dioxide Nanoparticles as an Additive. Lubricants, 4(2), 12. https://doi.org/10.3390/lubricants4020012
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Wu, Y. Y., Tsui, W. C., & Liu, T. C. (2007). Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 7–8(262), 819–825. https://doi.org/10.1016/j.wear.2006.08.021
Xia, W. Z., Zhao, J. W., Wu, H., Jiao, S. H., & Jiang, Z. Y. (2016). Study on Tribological Property of Nano-TiO2 Additive Oil-in-Water Lubricant during Hot Rolling. Materials Science Forum, 874, 381–386. https://doi.org/10.4028/www.scientific.net/MSF.874.381
Xia, W., Zhao, J., Wu, H., Zhao, X., Zhang, X., Xu, J., … Jiang, Z. (2016). Effects of Nano-TiO2 Additive in Oil-in-Water Lubricant on Contact Angle and Antiscratch Behavior. Tribology transactions, 60(2), 362–372. https://doi.org/10.1080/10402004.2016.1168900
Ali, M. K. A., Fuming, P., Younus, H. A., Abdelkareem, M. A. A., Essa, F. A., Elagouz, A., & Xianjun, H. (2018). Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Applied Energy, 211, 461–478. https://doi.org/10.1016/j.apenergy.2017.11.013
Ali, M. K. A., Xianjun, H., Elagouz, A., Essa, F. A., & Abdelkareem, M. A. A. (2016). Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles. Journal of Nanoparticle Research, 18(12), 377. https://doi.org/10.1007/s11051-016-3679-4
Ali, M. K. A., Xianjun, H., Mai, L., Qingping, C., Turkson, R. F., & Bicheng, C. (2016). Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribology International, 103, 540–554. https://doi.org/10.1016/j.triboint.2016.08.011
Ali, M. K. A., Xianjun, H., Mai, L., Bicheng, C., Turkson, R. F., & Qingping, C. (2016). Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear, 364–365, 270–281. https://doi.org/10.1016/j.wear.2016.08.005
Ye, W., Cheng, T., Ye, Q., Guo, X., Zhang, Z., & Dang, H. (2003). Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Materials Science and Engineering: A, 359(1), 82–85. https://doi.org/10.1016/S0921-5093(03)00353-8
Gao, Y., Chen, G., Oli, Y., Zhang, Z., & Xue, Q. (2002). Study on tribological properties of oleic acid-modified TiO2 nanoparticle in water. Wear, 252(5), 454–458. https://doi.org/10.1016/S0043-1648(01)00891-2
Gao, Y., Sun, R., Zhang, Z., & Xue, Q. (2000). Tribological properties of oleic acid — modified TiO2 nanoparticle in water. Materials Science and Engineering: A, 286(1), 149–151. https://doi.org/10.1016/S0921-5093(00)00626-2
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Transpot System Engineering (JTSE) belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.
Disclaimer: The views and opinions expressed in the articles are those of the authors and do not necessarily reflect the official policy or position of the JTSE. Examples of analysis performed within are only examples and they should not be utilized in real-world. Assumptions made within the analysis are not reflective of the position of any JTSE entities.