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ABSTRACT 
 
This study aims to investigate the application 
of a deep neural network for the Automated 
Underwater Vehicle in the subsea pipeline 
inspection. In today’s modern world, we see 
more sophisticated and precise computer 
vision object detection technology being 
implemented in our daily lives. To name a few, 
security cameras, self-driving cars, drones and 
more. This research suggests that computer 
vision pipeline defect detection is an 
attractive solution for future subsea pipeline 
defect detection as it relies less on human 
intervention and is more reliable. The machine 
learning algorithm of our focus, Faster RCNN, 
is studied. We explained the methods of our 
experimentation and the training process and 
validated the custom dataset. The outcomes 
are separated into different sections: training 
curve, visual data representation, and model 
accuracy in different operating environments. 
In conclusion, our model can detect the 
underwater pipeline with a leak size of up to 
1mm. However, the low accuracy due to the 
insufficient dataset is recognized as a 
bottleneck, and some recommendations are 
suggested for future improvement. 
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INTRODUCTION 
 
It is well-known that offshore leaks have been 
and still are a problem humanity face. 
Whenever the mass media reports any leak, 
giant corporations are the ones to be criticized 
and blamed. According to GESAMP, in 2007, the 
number of offshore spills increased from an 
average of 47 per annum since 1968 to 188 
ruptures and 228 leaks, respectively. Amongst 
the offshore leaks, pipeline ruptures are one of 
the main causes of the offshore disaster. 
Statistics have shown that from the 1970s to the 
2000s, pipeline ruptures increased at an 
alarming rate and contributed to almost 37% of 
the spills in number and 26% in volume at their 
peak (Burgherr, 2007), as shown in Figure 1. 
Meanwhile, in 2010, a report released by the 
U.S. Minerals Management Services revealed 
that the number has quadrupled since the 90s. 
In the first decade of the millennium, 350 
pipeline spills happened worldwide. 
 

mailto:scheeloon@utm.my


Journal of Transport System Engineering 10:2 (2023) 93–101 
Ong Yi Kai et.al. 

10:2 (2023) 78–84 | www.jtse.utm.my | eISSN 2289–9790 | 94 

 
Figure 1: Onshore and offshore spill volume from 1970 to 2000 (Burgherr,2007) 

 
It is important to point out that the rise of 
offshore leaks is due to the sharp increase in the 
total number and length of offshore pipelines 
deployed due to more offshore activities and the 
increased demand for gas and petrol. On the other 
hand, it has also been pointed out that the poor 
maintenance of the pipelines has also been 
identified as the cause behind the leaks. On one 
occasion, in tropical West Africa, the poor 
maintenance and corrosive environment have led 
to several ruptures and spills. Besides, during the 
reign of the Soviet Union, this was especially true 
when numerous damaged pipes were idled for 
years with minimal effort to dig out ditches to 
contain the contamination.  

The literature covers offshore visual 
inspection methods, emphasizing in-line 
inspection with Non-Destructive Testing (NDT) 
methods like magnetic flux leakage (MFL) testing, 
ultrasonic testing (UT), closed circuit television 
camera (CCTV), eddy current testing (EC) and 
electromagnetic acoustic technology (EMAT) for 
defect detection. CCTV, predominantly via 
robots, is common. Computer vision aids data 
analysis, though limitations exist in capturing 
subsurface defects. Safizadeh (2012) proposed an 
optical system for corrosion detection, with 
documented limitations (Ma et al., 2021). 
Thermal imaging by Vrana et al. (2008) and 
Oswald et al. (2007) detects defect cracks 
effectively for various applications. Chen et al. 
(2019) introduced eddy current pulse thermal 
imaging.  

Sewage pipelines use machine learning with 
CCTV for defect detection, suggesting cross-
industry insights. In today’s modern world, we 
see more sophisticated and precise computer 
vision object detection technology being 
implemented in our daily lives. To name a few, 

security cameras, self-driving cars, drones and 
more. This technology advancements suggest 
that computer vision pipeline defect detection 
can be an attractive solution for future subsea 
pipeline defect detection as it relies less on 
human intervention and is more reliable. 
Therefore, as a first approximation, we study the 
adoption of deep neural network on an 
experimental inspection data set obtained under 
controlled environment for pipeline defect 
detection. 
 
 
METHODOLOGY 
 
Different PVC pipe sizes were prepared 
beforehand with diameters of 0.5 in, 1.0 in, and 
1.5 in. The pipes were then submerged into a 40 
cm × 40 cm × 70 cm dimension of a water tank. 
The illumination of the surroundings was 
measured with an infrared sensor and was 
recorded. As a first approximation, the 
underwater camera was then submerged to 
capture the data. A measuring tape measured 
the distance between the camera and the pipe 
to ensure the distance as per requirement. On 
the other hand, the defect of the pipe is made in 
different leak sizes, such as 1 mm, 2 mm, and 3 
mm, as illustrated in the table below. The defect 
size is also measured with the measuring tape. In 
this study, two data sets were taken for each 
training and validation use. The training data are 
random, while the validation data are required 
to follow specific fixed criteria. The validation 
criteria are given in Table 1. Overall, 289 data are 
taken, of which 244 are for training and 45 for 
validation.  
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Table 1: Validation Criteria 

No. Lux Diameter (in) Height (cm) Joint Leak Size (mm) 

1 <100 5 20 yes  

2 <100 5 20 yes  

3 <100 5 20 no  

4 <100 5 20 no  

5 <100 5 20 no  

6 >100 5 40 no 20 

7 >100 5 40 no 20 

8 >100 5 40 no 20 

9 >100 5 40 no 20 

10 >100 5 40 no 20 

11 >100 5 60 no 10 

12 >100 5 60 no 10 

13 >100 5 60 no 10 

14 >100 5 60 no 10 

15 >100 5 60 no 10 

16 <100 10 20 no 10 

17 <100 10 20 no 10 

18 <100 10 20 no 10 

19 <100 10 20 no 10 

20 <100 10 20 no 10 

21 >100 10 40 no  

22 >100 10 40 no  

23 >100 10 40 no  

24 >100 10 40 no  

25 >100 10 40 no  

26 <100 10 60 no 30 

27 <100 10 60 no 30 

28 <100 10 60 no 30 

29 <100 10 60 no 30 

30 <100 10 60 no 30 

31 <100 15 20 no 10 

32 <100 15 20 no 10 

33 <100 15 20 no 10 
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No. Lux Diameter (in) Height (cm) Joint Leak Size (mm) 

34 <100 15 20 no 10 

35 <100 15 20 no 10 

36 >100 15 40 no 20 

37 >100 15 40 no 20 

38 >100 15 40 no 20 

39 >100 15 40 no 20 

40 >100 15 40 no 20 

41 >100 15 60 no  

42 >100 15 60 no  

43 >100 15 60 no  

44 >100 15 60 no  

45 >100 15 60 no  

 
 

The collected data shall be fed into the 
codes for training and validation. Before this, 
labeling and normalizing are required. This is 
done in the Linux bash shell. Firstly, a heif-
convert function is used to convert the images 
into jpgs. Then, exiftool is used to remove the 
exif data in the image data, which will cause 
trouble during the training stage. Next, the 
processed images are labeled manually using 
the coco-annotator provided by J.Brooks from 
the University of Guelph, Canada. Manual data 
labeling is essential in every part of object 
detection custom dataset training. A handy tool 
can save much time and effort for such a 

process. The labeled data will have their json file 
containing the annotation information in the 
COCO dataset format. This information will be 
useful as it will tell the machine learning 
algorithm where the ground-truth object is and 
segment them from their background. The 
validation data also requires these annotation 
data to cross-check its prediction with the json 
data. It is important to mention that there are 
two classes of data labeled during the 
annotation: the “Pipe” and the “Defect.” Two 
classes are labeled with bounding box and 
polygon segmentation. 

 

 
Figure 2: Data Annotation 
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2.0  Training and Validation 
 
The data is trained in the Google COLAB, an 
interactive Python shell with dedicated GPU, 
CPU, and RAM for users to run their codes, 
specifically for machine learning model training. 
The dataset is separated into 2 for training and 
validation purposes. The program will then give 
the output by using the trained memory. The 
results are done by answer-checking with the 
validation dataset to see how many scores the 
model gets. Python uses an extensive library 
provided by Facebook Research and Detectron2 
by Y.X. Wu et al. (2019). We will use its pre-
trained model baseline for our custom dataset to 
improve the model accuracy. The selected 
baseline in this case will be Faster RCNN DC5 3x. 
All the annotation files are produced 
beforehand, and the images are referred to as 
datasets. 

The number of iterations and batch size are 
adjusted at 300 and 128 separately. This is done 
by trial and error until the training curve is 
optimized. Generally, an iteration indicates the 
number of times a batch of data is passed 
through the algorithm, while a batch size is the 
number of data passed to the algorithm per 
iteration. In addition, an epoch describes the 
entire dataset passed through the algorithm. As 
discussed before, the under-fitting and over-
fitting of a model shall be avoided. Hence, the 
trial-and-error method is used to find the 
optimum point for allocating the iteration and 
batch size. The validation results will then assess 

the trained model. The tensorboard and the 
image visualization function visualize the results. 
 
 
RESULTS AND DISCUSSION 
.  
3.0  Tensorboard 
 
The training and validation results are 
displayed on the tensorboard, a training 
visualization tool provided by Google, 
TensorFlow. We will discuss several 
parameters, such as class accuracy, false 
negative, foreground class accuracy, total loss, 
and class loss. Class accuracy indicates the 
model's accuracy in determining the different 
classes in the validation process. In contrast, 
foreground class accuracy refers to how well 
the model segments the object from its 
background. The false negative refers to when 
the output is expected to be positive, but the 
model gives a negative result. From the 
tensorboard, in Figure 3, we observe the trend 
where both accuracies of the model increase 
as the iteration increases until its peak at 
iteration 300 (class accuracy is 0.96 while 
foreground class accuracy is 0.7). On the other 
hand, the false negative drops to 0 at iteration 
280. Looking at the loss curve in Figure 4, the 
losses of the model reduce as expected with the 
increase of iteration from 1.9 to 0.4 and from 
1.1 to 0.1 for total loss and class loss, 
respectively. 

 



Journal of Transport System Engineering 10:2 (2023) 93–101 
Ong Yi Kai et.al. 

10:2 (2023) 78–84 | www.jtse.utm.my | eISSN 2289–9790 | 98 

 
Figure 3: Accuracy of model 

 

 
Figure 4: Losses of model 
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3.1  Visualization 
 
From the validation process, we can output the 
segregated data with labels done by the 
algorithm. The bounding box will highlight the 
selected object and indicate the class it belongs 

to in the top left corner. There are some 
outputs to share as in Figure 5. Do note that 
the color of the bounding box does not carry 
any representation meaning and is random. 
 

 

   
(a) Output a    (b) Output b   (c) Output c 

Figure 5: Validation image 
 
 
3.3  Comparison in Different Environments 
 
This section will assemble the validation results 
and display them graphically according to their 
groups. From the results, we know that the 
bigger the pipe diameter, the easier it is for 
object detection to identify the leaks in the pipe 
as shown in Figure 6. It shall be noted that the 
low accuracy on the 1.5 pipe diameter is due to 
the different heights, which will be discussed 
later. Also, from the evidence gathered, we can 
confirm that with greater illuminance (see 

Figure 7), object detection works better in 
identifying the leaks in the pipe. Besides, the 
graph in Figure 8 shows that for the camera 
closer to the pipe up to 20cm, the detection 
accuracy increases to 0.8 but drops to 0.67 
when the height increases to 40cm. When the 
camera height is 80cm, the accuracy fails to 
0.20 due to the difficulty in finding the leaks as 
highlighted in Figure 9. This may also be caused 
by the lower resolutions of the pixels captured 
by the camera. 
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Figure 6: Accuracy for different pipe diameter 
 

Figure 7: Accuracy for different illuminance 
 

 
Figure 8: Accuracy for different camera heights 

 

Figure 9: Accuracy for different leak sizes 
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Lastly, the leak size is found to be best 

detected at 2mm with an accuracy of 0.7. The 1 
mm leak size is harder to detect due to its 
smaller dimensions. The reason behind the low 
accuracy for the 3mm leak size is the absence of 
data on the leak portrayed on the pipe. The 
different defect patterns may also cause this 
low accuracy compared to the 1mm and 2mm 
leaks. The defect pattern on the 3mm pipe is 
noticed to look like a punctuated shape, while 
the other ones look like cracks. This also 
indicates that more data with different defect 
patterns is required for the training to improve 
object detection accuracy. 
 
 
CONCLUSION 
 
In conclusion, our research demonstrates the 
successful training of a machine learning model 
for deep water pipeline defect inspection, 
showcasing its proficiency in capturing defects as 
small as 1mm. However, challenges arise with a 
3mm leak size due to a distinct crack pattern not 
covered in the training dataset. To enhance 
overall accuracy, diversifying the training dataset 
becomes imperative, allowing the model to 
adapt to various scenarios and mitigating the risk 
of overfitting. 
 
Furthermore, environmental factors significantly 
impact the model's accuracy, revealing that 
higher illuminance positively influences object 
detection. Proximity of the camera to the 
pipeline and larger pipe sizes contribute to better 
precision in object detection. 
 
As we conclude, we would like to advocate for 
further exploration in this field. Future research 
should encompass a broader range of datasets to 
mirror real-world conditions, incorporating 
elements such as buried pipes, natural gas leaks, 

crude oil spills, and varying ambient light 
conditions. Attention to meticulous dataset 
labeling is essential, as it directly influences the 
model's performance. 

The current training, conducted with 244 
datasets on Google's dedicated GPU, achieved a 
commendable speed of 30 minutes. However, as 
datasets increase, investing in more 
sophisticated hardware with CUDA support is 
essential for efficiency improvement. 
Additionally, future researchers should dedicate 
efforts to comparing different pre-trained 
models to optimize defect detection algorithms. 
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