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INTRODUCTION 
 
Over the last two decades, the design of passive 
vehicle suspension system is greatly based on 
running the predictive model for the computer 
experiments. The term predictive model refers 
to a mathematical model that represent a 
system by mathematical relations [1]. With 
good predictive model, the effect of new 
component toward existing subsystems can be 
analysed long before the prototype is built [2].  

Rapid progress in computer technology 
had caused attraction to increase the 
complexity to the predictive model. The main 
objective of the effort is to digitize the real 
physical behaviour and provide a useful tool w 
but, most importantly, to adjust parameters of 
the system so that it meets the performance 
target requirements [3]. However, the 
simulation of such model is computationally 
expensive and time consuming since it requires 
more data and funding to fulfil it [4]. On the 
other hand, the model is also expected to have 
the simplest representation to allow efficient 
and fast simulations of the vehicle dynamics for 
improving the efficiency of the total 
engineering design process. An oversimplified 
model will not be capable of revealing 
important effects. These conflicting 
requirements show that modelling is a 
challenging design task, in particular, for 

ABSTRACT 

 
High-fidelity (HF) model always provides better 
performance in assessing vehicle suspension 
system design compared to low-fidelity (LF) 
model. However, HF model is computationally 
expensive. On the contrary, LF model, which 
depends on a few parameters allow the 
simulation of ’what-if’ problem run faster and 
the results potentially comparable with HF 
model. This research attempts to conduct 
feasibility study on LF model using surrogate 
model for the application of vehicle suspension 
study. The surrogate models are classified into 
three types which are Response-Based (RB) 
model, Variable-Based (VB) model, and 
Parameter-Based (PB) model. Through three 
statistical metrics and graphical interpretation, 
the results show that VB model gave the most 
superior performance compared to RB model 
and PB model.    
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complex systems like suspension system. Sharp 
[5] said that  

 
“The ideal model is that minimum 
complexity which is capable of solving 
the problems of concern with an 
acceptable risk of the solution being 
‘wrong’. This acceptable risk is not 
quantifiable and it must remain a matter 
of judgement”. 

 

[6], [7], [8], [3], and [9] have proposed the 
potentiality solution for these conflicting 
requirements is by implementing a surrogate 
model. The surrogate model will later substitute 
the role of the high-fidelity model in the further 
engineering design tasks. This strategy will 
speed up the design process and potentially 
become a compulsory tool in modern 
concurrent engineering practice. 

The subject of passive suspension system 
modeling and surrogate modeling are 
abundantly available in the literature. However, 
the number of published literatures that 
integrate vehicle suspension system model and 
surrogate model are still in small amounts. 

There are two formulation approaches for 
the ride and handling models architecture 
which are called as lumped mass approach and 
multi-body system approach. The algebraic-
differential lumped mass model is normally 
used in the modeling and simulation of 
suspension system during the early car design 
phase. All the car parts are decomposed into 
three elementary elements, i.e., inertia, 
damping, and stiffness. Then, appropriate 
linking is configured to connect these elements 
and forming a single or multiple degrees-of-
freedom car model. In general, there are 
numerous degrees-of-freedom associated with 
this type of model. The number of degrees-of-
freedom (dof) of the model is vary from one 
simulation to another depending on the level 
details required. A free-floating rigid body in 
three-dimensional space has six dof, i.e., three 
translational freedoms and three rotational 
freedoms which respect to the x, y, and z axes 
respectively. Figure 1(a) shows the most basic 
ride model, one dof of quarter car model. All the 
car’s masses are lumped together as one unit 
and the tire is assumed as a rigid body. Quarter 
car model (QCM) is a single station of 

suspension system or one fourth of the vehicle. 
This model is mostly used to teach 
undergraduate student about the fundamental 
concept of vibration and gaining general 
understanding of the system. [10] used 1 dof 
model to develop basic understanding of 
skyhook algorithms on the active and semi-
active suspension systems and then optimize it 
by using an evolutionary algorithm. However, 
this model is inadequate for ride study [11]. 
Most of researchers in vehicle dynamics agree 
that the suspension system acts as a mediator 
between unsprung body and sprung body. In 
order to capture these masses behavior, the 
researchers increase the dof from one to two.  
In 2 dof, there are two masses where each mass 
represents the unsprung mass and sprung mass 
respectively (Figure 1(b)). This model is known 
as the lowest fidelity model to study ride 
dynamics behaviour [12], receive the largest 
attention in the literature, and has capability to 
capture a pure heave dynamics behavior only.  
 
 

MZ1

Z0
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(a) (b) 

 
Figure 1: (a) one dof model and (b) two dof model (was 

sketched by [12]). 

Increasing the dof number to 4 dof allows the 
behavior of bounce-and-rolling dynamics, and 
bounce-and-pitching dynamics to be studied. 
The 4 dof model is also known as half car model 
(HCM). If the layout of HCM is in a lateral plane, 
it is intended for bounce-and-rolling dynamics 
simulation [13]. Moreover, the bounce-and-
pitching dynamics simulation requires the 
HCM’s layout to be in longitudinal plane [14].  
However, QCM and HCM do not have enough 
complexity to be used for interpreting the 
combining effect of bounce, rolling, and 
pitching motions. To satisfy this complex 
necessity, the dof number is increased to 7 dof. 
Seven dof system model is a three-dimensional 
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model, and can representing a full car model 
(FCM). [15] refer this 7 dof as reduced-order 
model compared to MBS full car model. The 
reduced-order model is linearized   FCM can be 
used to predict the sprung roll motion, sprung 
pitch motion, sprung bounce motion, and four 
corners unsprung bounce motion performances 
[16]. [17] shows have added anti-roll bar effect 
into 7 dof system model.  However, this effect 
can be ignored for studying a normal road ride 
[4]. On the other research, due to center height 
of gravity, and roll center of military truck is 
considered high, [17] again take the roll axis 
effect into account of ride dynamics 
performance. Both effects provide better 
accuracy in aspect of rolling response 
prediction, even though the dof does not 
increases. However, the inclusion of [18] has 
developed 14 dof model with 6 dof of sprung 
body and 2 dof at each of four corners to 
simulate vehicle rollover. Ghike’s 14 dof model 
has included roll center in the derivation, 
capable to calculate vertical body response at 
each sprung body corner compared to 7 dof 
model, and the model validation is carried out 
against the responses produced by two 
standard softwares, i.e., CarSim and MSC 
Adams model. They have claimed that 14 dof is 
able to produce more detailed prediction. [19] 
has derived and validated 16 dof of lumped 
mass model. The integration of 7 dof of ride 
model and 9 dof of handling model created the 
16 dof model. This 16 dof model allows to 
simulate ride and handling characteristics 
simultaneously.  However, this research has 
chosen 7 dof model to be as the high-fidelity 
model due to this model has been recognized as 
adequate to representing full car’s ride 
characteristics. 

Based on the literature review done to the 
date of this paper submission, it was impossible 
to enhance the quality of quarter car model’s 
responses (which in this case is low-fidelity 
model) so that it will match to the quality of full 
car model’s responses (which in this case is 
high-fidelity model) if the surrogate model 
formulation depends purely based on the 
physics principles. The integration between 
global approximation model and physic-based 
surrogate model were found having potential to 
formulate one variant of surrogate model for 

vehicle suspension application. The key role of 
this new variant of surrogate model is to replace 
the usage of high-fidelity model in later works 
such as optimizing the suspension setting. In 
order to establish this paper’s research, three 
global approximation modeling methods, which 
had received great attention recently are 
reviewed. The methods are Polynomial Model, 
Radial Basis Function Model, and Kriging Model.  

Polynomial Model. Taylor’s theorem states 
that any smooth function can be approximated 
by infinite series of polynomial terms [20]. 
Taylor series expansion then provides a 
mechanism to express this idea for producing 
useful results [1]. Eq. 1 shows one-dimensional 
expression of this series expansion, where 

𝑓(𝑛)(𝑥𝑖) is the 𝑛th derivative at 𝑥𝑖, and 𝑥𝑖 is a 
current or reference point. 

 

 𝐹(𝑥𝑖+1) =  ∑
𝐹(𝑛)(𝑥𝑖)

𝑛!

∞

𝑛=0

(𝑥𝑖+1 − 𝑥𝑖)
𝑛 (1) 

 
Due the infinite series (Eq. 1) is difficult to be 
handled in common practice, infinity term is 
separated into some first 𝑁 terms and a 
remainder 𝑅𝑁 as written in Eq. 2 [1]. Equation 3 
is an approximation function after 𝑅𝑁 term is 
neglected because of small in value. This 
equation is very useful in doing local 
approximation. 

 
𝐹(𝑥𝑖+1) =  ∑

𝐹(𝑛)(𝑥𝑖)

𝑛!

𝑁

𝑛=0

(𝑥𝑖+1

− 𝑥𝑖)
𝑛 + 𝑅𝑁 

(2) 

   

 
𝐹(𝑥𝑖+1) =  ∑

𝐹(𝑛)(𝑥𝑖)

𝑛!

𝑁

𝑛=0

(𝑥𝑖+1

− 𝑥𝑖)
𝑛 

(3) 

The only unknowns in Eq. 4 re the values at the 

prediction 𝑥𝑖+1. Then, [20] recomposed this 
equation and stated as 

 𝐹(ℎ) =  𝛼0 + 𝛼1ℎ + 𝛼2ℎ
2 +⋯

+ 𝛼𝑛ℎ
𝑛 

(4) 
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The flexure property owned by Eq. 5 make it 

turn into the most dominant expression of 

polynomial function and widely rewritten as 

 𝐹(𝑥) =  𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯

+ 𝑎𝑛𝑥
𝑛 

(5) 

The coefficients of 𝑎0, 𝑎1, 𝑎2, …, 𝑎𝑛 are real 

numbers (ℝ), and 𝑛 is a non-negative integer, is 

the degree or order of the polynomial. A first-

order polynomial is a linear function, and 

higher-order polynomials are so-called non-

linear functions [21]. A more generic polynomial 

model is mathematically written as  

 
𝐹(𝑧) = 𝑤0𝑧0 +𝑤1𝑧1 +⋯+

𝑤𝑚𝑧𝑚 + 𝜀, 
(6) 

where 𝑧0, 𝑧1, … , 𝑧𝑚 are 𝑚+ 1 basis functions, 

and 𝜀 is the error. Eq. 7 can also be expressed in 

matrix form as 

 
{𝐹(𝒛)} = [𝜻]{𝒘} + {𝜺} 

(7) 

where 𝜻 is the Vandermonde matrix (i.e., Eq. 8). 

 𝜁 =  [

𝑧01 𝑧11 𝑧21 … 𝑧𝑚1
𝑧02 𝑧12 𝑧22 ⋯ 𝑧𝑚2
⋮ ⋮ ⋮ ⋮ ⋮
𝑧0𝑛 𝑧1𝑛 𝑧2𝑛 ⋯ 𝑧𝑚𝑛

] (8) 

The maximum likelihood estimates of 𝒘 are 

unknown tuning factors and is satisfied through 

minimizing the sum the squares of the errors 𝜀.  

 𝒘 = 𝜻+𝐹(𝒛) (9) 

where 𝜻+ = (𝜻𝑇𝜻)−1𝜻𝑇 is the Moose-Penrose 

pseudo-inverse of 𝜻.  [22] and [23] have 

recomposed this method and called this model 

as mechanistic model. They have utilized this 

mechanistic model in structural optimization 

problem 

Radial Basis Function Model. Hardy in 1971 was 

the first proposed the idea of using Radial Basis 

Function Model (RBFM) as approximation 

function [24].  

RBFM expresses surrogate models as a 

linear combination of radial basis functions 

𝜓(𝑟) that pass through all sampling points, 

𝑥𝑖  ∈ 𝑅
𝑛, 𝑖 = 1,… ,𝑚, and was defined by [25] 

as 

 𝐹̃(𝑥) =∑𝑤𝑖𝜓(𝑟𝑖)

𝑚

𝑖=1

, (10) 

where, 𝑤𝑖 are the weights of the radial basis 

functions (RBFs). Each constituent basis 

function is defined in terms of the Euclidean 

distance (𝑟𝑖) between the prediction point 𝒙 and 

the 𝑖th of basis function center 𝑥𝑐
(𝑖)

, and is 

expressed as 

 𝑟𝑖 = ‖𝑥𝑖 − 𝑥𝑐
(𝑖)
‖ (11) 

[24] has divided RBFs into two 

categories, i.e., non-parametric basis function 

(Eq. 12, Eq. 13, and Eq. 14) and parametric basis 

functions (Eq. 15, Eq. 16, and Eq. 17). The 

following expressions are RBFs. 

 

 i. 𝜓(𝑟) = 𝑟, - Linear (12) 
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 ii. 𝜓(𝑟) = 𝑟3,  - Cubic (13) 

 
iii. 𝜓(𝑟) =

𝑟2 ln 𝑟, 

- Thin plate 

spline 
(14) 

 
iv. 𝜓(𝑟) =

𝑒
−𝑟2

(2𝜎2), 
- Gaussian (15) 

 

v. 𝜓(𝑟) =

(𝑟2 +

𝜎2)
1
2⁄ , and 

- Multi-quadric (16) 

 

vi. 𝜓(𝑟) =

(𝑟2 +

𝜎2)−
1
2⁄ . 

- Inverse multi-

quadric 
(17) 

 The weights, 𝑤𝑖, are evaluated using all 

the sampling points 𝑥𝑖 and their corresponding 

function values 𝐹̃(𝑥). Gram matrix 𝝍 is used to 

represent the matrix of the basis function 

values at the sampling points [25], and specified 

as  

 

𝝍

=

[
 
 
 
 𝜓(‖𝑥1 − 𝑥𝑐

(1)
‖) 𝜓(‖𝑥1 − 𝑥𝑐

(2)
‖) ⋯ 𝜓(‖𝑥1 − 𝑥𝑐

(𝑚)
‖)

𝜓(‖𝑥2 − 𝑥𝑐
(1)
‖) 𝜓(‖𝑥2 − 𝑥𝑐

(2)
‖) ⋯ 𝜓(‖𝑥2 − 𝑥𝑐

(𝑚)
‖)

⋮ ⋮ ⋱ ⋮

𝜓(‖𝑥𝑚 − 𝑥𝑐
(1)
‖) 𝜓(‖𝑥𝑚 − 𝑥𝑐

(2)
‖) ⋯ 𝜓(‖𝑥𝑚 − 𝑥𝑐

(𝑚)
‖)]
 
 
 
 

 (18) 

The column vector 𝒘 is the weights for each 

radial basis function. 

 𝒘 = {

𝑤1
𝑤2
⋮
𝑤𝑚

} (19) 

The column vector 𝑭̃ is the function values of all 

sampling points (𝐹̃(𝑥1)). 

 𝑭̃ =

{
 

 
𝐹̃(𝑥1)

𝐹̃(𝑥2)
⋮

𝐹̃(𝑥3)}
 

 
 (20) 

Similar to polynomial model, w is determined 

through Moose-Penrose pseudo-inverse of 𝝍+ 

 𝒘 = 𝝍+𝑭̃ (21) 

Even though Eq. 21 is linear in terms of the basis 

function weights 𝒘, but RBFM can representing 

highly non-linear outputs. 

Kriging Model. Matheron in 1963 had 

introduced the term Krigeage which now called 

as Kriging, as appreciation to the method 

developed by a South African mining engineer, 

D.G. Krige [25]. Kriging Model is an approach to 

approximate irregular data. This model consists 

of two components: (i) a “basis” function, and 

(ii) Gaussian random function with zero mean. 

The “basis” function is generally a polynomial 

(e.g., linear, quadratic, etc.) [1]. The general 

form of the Kriging model is written as 

 𝐹(𝒙) = 𝑓(𝒙) + 𝑍(𝒙) (22) 

where 𝑍(𝒙) is a Gaussian random function with 

zero mean on the sample space and 𝑓(𝒙) is a 

known approximation function which is usually 

any polynomial functions. Mathematically, 

𝑓(𝒙) is written as  

 𝑓(𝑥) =∑𝛽𝑖𝑔𝑖

𝑘

𝑖=1

(𝑥), (23) 
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or, in vector form, 

 𝑓(𝑥) = 𝒈𝑇𝜷, (24) 

 

where 𝜷 = [𝛽1,⋯ , 𝛽𝑘] and 𝒈 =

[𝑔𝑘(𝒙),⋯ , 𝑔𝑘(𝒙)]
𝑇. 

 The covariance matrix of 𝑍(𝑥) is stated as 

 

𝐶𝑜𝑣[𝑍(𝒙(𝑖)), 𝑍(𝒙(𝑗))] =

𝜎2𝑹(𝑅(𝒙(𝑖), 𝒙(𝑗))),  

𝑖 = 1,⋯ ,𝑁, 𝑗 = 1,⋯ ,𝑁𝑒𝑥𝑝 

(25) 

where 𝑥(𝑖) and 𝑥(𝑗) are two arbitrary points in 

the sample space,  𝜎2 is the variance of 𝑍(x), 

𝑅(𝒙(𝑖), 𝒙(𝑗)) is the spatial correlation function 

and 𝑹 is correlation matrix (Toropov, 2001). A 

common 𝑹 expression used is the Gaussian 

correlation function of the form 

 𝑅(𝒙(𝒊), 𝒙(𝑗)) = exp [−∑𝜃𝑘|𝒙𝑘
(𝑖) − 𝒙𝑘

(𝑗)
|
2

𝑁

𝑘=1

]. (26) 

The surrogate model is 

 𝑆(𝒙) = 𝒈𝑻(𝒙)𝜷𝒆 + 𝒓
𝑻(𝒙)𝑹−𝟏(𝑭𝒔 − 𝑭𝜷𝒆), (27) 

where 𝐹𝑠 is an observed responses vector and 𝒓  

is the correlations vector between the response 

at random location 𝑥 and sample points. 𝒓 is 

written as 

 𝒓(𝒙) = {𝑅(𝒙, 𝒙(1)),⋯ , 𝑅(𝒙, 𝒙(𝑁𝑒𝑥𝑝))}. (28) 

It was found that the Radial Basis Function 
model and Kriging model are mostly used for 
approximating high-fidelity model’s responses. 
On the other hand, Polynomial model is 
commonly-known used for developing 
response surface of actual experiment. 

 

 

METHODOLOGY 
 
1.1 The Architecture of Vehicle Suspension 
System Model 
 
Before developing the surrogate model, two 
models are constructed which are called as low-
fidelity (LF) model and high-fidelity (HF) model 
respectively in this research. LF and HF models 
are two models to represent a quarter vehicle 
size and a full vehicle size respectively. 
Moreover, HF model is more detailed model 
than the LF model. Many researchers had 
claimed that the HF model provides better 
performance prediction than LF model. 
However, LF are still being used and popular 
especially because of its simplicity, easy to 
setup, and portrays quick response review 
especially for early design stage. The 
architecture of these models is described in 
Sub-Section 1.1.1 and Sub-Section 1.1.2. 
 
1.1.1 Low-Fidelity Model 

   
A model for representing a single station of 
suspension system is called as quarter vehicle 
model (QVM) as shown in Figure 2. The upper 
body mass is consisting of the car body and the 
suspension mass, which is called sprung mass, 
𝑀𝑠.  The lower mass is the weight of the tire and 
its axle, called as the unsprung mass, 𝑀𝑢. 
 

Ms

Mu

CsKs

Kt

Zr

Zu

Zs

 
Figure 2: Free-body diagram of QVM or 2-DoF 

model. 
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The equations of motion for the QVM [26] are 
formulated from Newton’s second law as 
 

 𝑀𝑢𝑍̈𝑢 = 𝐾𝑡(𝑍𝑟 − 𝑍𝑢) − 𝐾𝑠(𝑍𝑢 − 𝑍𝑠) − 𝐶𝑠(𝑍̇𝑢 − 𝑍̇𝑠), (29) 

 𝑀𝑠𝑍̈𝑠 = 𝐾𝑠(𝑍𝑢 − 𝑍𝑠) + 𝐶𝑠(𝑍̇𝑢 − 𝑍̇𝑠). (30) 

 
 
1.1.2 High-Fidelity Model 

 
The basis of the high-fidelity model architecture 
is consisting of four QVMs (as in Figure 3) to 
represent each vehicle’s suspension corner. 
Then, these four QVMs are coupled with one 
rigid body that can vertically translate, roll, and 
pitch about their respective axis at the vehicle’s 
centre of gravity. This model is also known as 
seven-degrees-of-freedoms lumped mass 
model. The model is formulated on the basis of 
three Newton’s laws.  
 

 
 

Figure 3: A lumped mass model of vehicle. 

 
Equations of 31 to 34 are vertical translation of 
unsprung mass for each corner. 

 

𝑍̈𝑢𝑓𝑟 =
𝐾𝑡𝑓𝑟

𝑀𝑢𝑓𝑟
(𝑍𝑟𝑓𝑟 − 𝑍𝑢𝑓𝑟)

−
𝐾𝑠𝑓𝑟

𝑀𝑢𝑓𝑟
(𝑍𝑢𝑓𝑟

− 𝑍𝑠𝑓𝑟)

−
𝐶𝑠𝑓𝑟

𝑀𝑢𝑓𝑟
(𝑍̇𝑢𝑓𝑟

− 𝑍̇𝑠𝑓𝑟) 

(31) 

 

𝑍̈𝑢𝑓𝑙 =
𝐾𝑡𝑓𝑙

𝑀𝑢𝑓𝑙
(𝑍𝑟𝑓𝑙 − 𝑍𝑢𝑓𝑙)

−
𝐾𝑠𝑓𝑙

𝑀𝑢𝑓𝑙
(𝑍𝑢𝑓𝑙

− 𝑍𝑠𝑓𝑙)

−
𝐶𝑠𝑓𝑙

𝑀𝑢𝑓𝑙
(𝑍̇𝑢𝑓𝑙

− 𝑍̇𝑠𝑓𝑙) 

(32) 

 

𝑍̈𝑢𝑟𝑟 =
𝐾𝑡𝑟𝑟
𝑀𝑢𝑟𝑟

(𝑍𝑟𝑟𝑟 − 𝑍𝑢𝑟𝑟)

−
𝐾𝑠𝑟𝑟
𝑀𝑢𝑟𝑟

(𝑍𝑢𝑟𝑟

− 𝑍𝑠𝑟𝑟)

−
𝐶𝑠𝑟𝑟
𝑀𝑢𝑟𝑟

(𝑍̇𝑢𝑟𝑟

− 𝑍̇𝑠𝑟𝑟) 

(33) 

 

𝑍̈𝑢𝑟𝑙 =
𝐾𝑡𝑟𝑙
𝑀𝑢𝑟𝑙

(𝑍𝑟𝑟𝑙 − 𝑍𝑢𝑟𝑙)

−
𝐾𝑠𝑟𝑙
𝑀𝑢𝑟𝑙

(𝑍𝑢𝑟𝑙

− 𝑍𝑠𝑟𝑙)  

−
𝐶𝑠𝑟𝑙
𝑀𝑢𝑟𝑙

(𝑍̇𝑢𝑟𝑙

− 𝑍̇𝑠𝑟𝑙) 

(34) 

 
Next three equations of 35, 36, and 37 

are description of body motion at the centre of 

gravity of vehicle in 𝑧-axis (𝑍̈𝑏), rotation about 

𝑦-axis (𝜙̈𝑏), and rotation about 𝑥-axis (𝜃̈𝑏) as 
shown in Figure 3.  

 
 𝑍̈𝑏

=
𝐾𝑠𝑓𝑟

𝑀𝑏
(𝑍𝑢𝑓𝑟 − 𝑍𝑠𝑓𝑟)

+
𝐶𝑠𝑓𝑟

𝑀𝑏
(𝑍̇𝑢𝑓𝑟 − 𝑍̇𝑠𝑓𝑟)

+
𝐾𝑠𝑓𝑙

𝑀𝑏
(𝑍𝑢𝑓𝑙 − 𝑍𝑠𝑓𝑙)

+
𝐶𝑠𝑓𝑙

𝑀𝑏
(𝑍̇𝑢𝑓𝑙 − 𝑍̇𝑠𝑓𝑙)

+
𝐾𝑠𝑟𝑟
𝑀𝑏

(𝑍𝑢𝑟𝑟 − 𝑍𝑠𝑟𝑟)

+
𝐶𝑠𝑟𝑟
𝑀𝑏

(𝑍̇𝑢𝑟𝑟 − 𝑍̇𝑠𝑟𝑟)

+
𝐾𝑠𝑟𝑙
𝑀𝑏

(𝑍𝑢𝑟𝑙 − 𝑍𝑠𝑟𝑙)

+
𝐶𝑠𝑟𝑙
𝑀𝑏

(𝑍̇𝑢𝑟𝑙 − 𝑍̇𝑠𝑟𝑙). 

 (35) 
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𝜙̈𝑏 = −

𝑐𝐾𝑠𝑓𝑟

𝐼𝑥𝑥
(𝑍𝑢𝑓𝑟 − 𝑍𝑠𝑓𝑟)

−
𝑐𝐶𝑠𝑓𝑟

𝐼𝑥𝑥
(𝑍̇𝑢𝑓𝑟

− 𝑍̇𝑠𝑓𝑟)

+
𝑐𝐾𝑠𝑓𝑙

𝐼𝑥𝑥
(𝑍𝑢𝑓𝑙

− 𝑍𝑠𝑓𝑙)

+
𝑐𝐶𝑠𝑓𝑙

𝐼𝑥𝑥
(𝑍̇𝑢𝑓𝑙

− 𝑍̇𝑠𝑓𝑙)

−
𝑐𝐾𝑠𝑟𝑟
𝐼𝑥𝑥

(𝑍𝑢𝑟𝑟

− 𝑍𝑠𝑟𝑟)

−
𝑐𝐶𝑠𝑟𝑟
𝐼𝑥𝑥

(𝑍̇𝑢𝑟𝑟

− 𝑍̇𝑠𝑟𝑟)

+
𝑐𝐾𝑠𝑟𝑙
𝐼𝑥𝑥

(𝑍𝑢𝑟𝑙

− 𝑍𝑠𝑟𝑙)

+
𝑐𝐶𝑠𝑟𝑙
𝐼𝑥𝑥

(𝑍̇𝑢𝑟𝑙

− 𝑍̇𝑠𝑟𝑙). 

(36) 

 
 

𝜃̈𝑏 = −
𝑎𝐾𝑠𝑓𝑟

𝐼𝑦𝑦
(𝑍𝑢𝑓𝑟 − 𝑍𝑠𝑓𝑟)

−
𝑎𝐶𝑠𝑓𝑟

𝐼𝑦𝑦
(𝑍̇𝑢𝑓𝑟

− 𝑍̇𝑠𝑓𝑟)

−
𝑎𝐾𝑠𝑓𝑙

𝐼𝑦𝑦
(𝑍𝑢𝑓𝑙

− 𝑍𝑠𝑓𝑙)

−
𝑎𝐶𝑠𝑓𝑙

𝐼𝑦𝑦
(𝑍̇𝑢𝑓𝑙

− 𝑍̇𝑠𝑓𝑙)

+
𝑏𝐾𝑠𝑟𝑟
𝐼𝑦𝑦

(𝑍𝑢𝑟𝑟

− 𝑍𝑠𝑟𝑟)

+
𝑏𝐶𝑠𝑟𝑟
𝐼𝑦𝑦

(𝑍̇𝑢𝑟𝑟

− 𝑍̇𝑠𝑟𝑟)

+
𝑏𝐾𝑠𝑟𝑙
𝐼𝑦𝑦

(𝑍𝑢𝑟𝑙

− 𝑍𝑠𝑟𝑙)

+
𝑏𝐶𝑠𝑟𝑙
𝐼𝑦𝑦

(𝑍̇𝑢𝑟𝑙

− 𝑍̇𝑠𝑟𝑙) 

(37) 

 

The following four equations are used to 
connect four QVM with the vehicle body.  
 

 𝑍̈𝑠𝑓𝑟 = 𝑍̈𝑏 − 𝑎𝜃̈𝑏 − 𝑐𝜙̈𝑏 (38) 

 𝑍̈𝑠𝑓𝑙 = 𝑍̈𝑏 − 𝑎𝜃̈𝑏 + 𝑐𝜙̈𝑏 (39) 

 𝑍̈𝑠𝑟𝑟 = 𝑍̈𝑏 + 𝑏𝜃̈𝑏 − 𝑐𝜙̈𝑏 (40) 

 𝑍̈𝑠𝑟𝑙 = 𝑍̈𝑏 + 𝑏𝜃̈𝑏 + 𝑐𝜙̈𝑏 (41) 

 
 
1.2 Vehicle Suspension System 
Parameters  
 
The vehicle type used for this project is a sedan 
passenger car with a curb weight of 1270 kg.  
For a simulation of a quarter vehicle model, the 
front-end weight is 317.5 kg.  Other vehicle data 
are revealed in Table 1.  The data of spring 
stiffness coefficient and damping coefficient are 
within a range for a standard passenger car.  
 
 
1.3 Suspension System Design Boundary 
 

Spring stiffness, 𝐾𝑠 and damper rate, 𝐶𝑠 
are two suspension elements that play an 
importance role in ride dynamics performance. 
Several researchers skilled in this vehicle 
dynamics such as [12], [27], [26], and [4] have 
proposed three criteria to be used in evaluating 
the suspension system performance. The three 
criteria are Suspension Working Space (SWS), 
Body Acceleration (BAcc), and Dynamic Tyre 
Load (DTL). According to [28], the design of 
suspension system is controlled by a few 
numbers that have not changed since the time 
of Olley and they will remain forever. The 
numbers are called as magic number by [28]. 
[29], [11], and [30] have indicated that all of 
them agreed on the statement issued by [28]. 
Therefore, the spring stiffness and damper rate 
limits can be established as revealed in Table 2.  
 

Table 1: Parameters for full vehicle model. 

Parameters Value 

Sprung Mass, 𝑀𝑠 317.5 kg 

Unsprung Mass, 𝑀𝑢 45.4 kg 

Tire Stiffness, 𝐾𝑡 192 kN/m 
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Parameters Value 
Moment of inertia 
about x-axis, 𝐼𝑥𝑥 

220.45 
kgm2 

Moment of inertia 
about y-axis, 𝐼𝑦𝑦 

1067.22 
kgm2 

Moment of inertia 
about y-axis, 𝐼𝑧𝑧 

1181.08 
kgm2 

Length of the front 
wheelbase, 𝑎 

0.961 m 

Length of the rear 
wheelbase, 𝑏 

1.504 m 

Length of the 
suspension hard-point 
to the center line, 𝑐 

0.723 m 

Height of the center of 
gravity from the roll 
center, ℎ 

0.382 m 

 
 
 

Table 2: Operating range of spring stiffness and damper 
rate of sedan passenger car. 

Suspension Elements Operating Range 

Spring Stiffness 12,536 N/m < 𝐾𝑠 < 24,570 N/m 

Damping Rate 798 Ns/m < 𝐶𝑠 < 2235 Ns/m 

 
 

1.4 The Architecture of Surrogate Model 
 
The rudimentary architecture of the surrogate 

model, 𝑆̃(𝒙, 𝒂) is consisting of low-fidelity 

model’s response, 𝑓(𝒙), high-fidelity model’s 

response, 𝐹̃(𝒙), and the tuning coefficients, 𝒂. 
The architecture of the surrogate model is 
mathematically written as  
 

 𝑆̃(𝒙, 𝒂) ≡ 𝐹̃(𝑓(𝒙), 𝒂) ≈ 𝐹̃(𝒙)  (42) 

 
In this paper, three routines of surrogate 

model have been formulated which are called 
as Response Based Model (RBM), Variable 
Based Model (VBM), Parameter Based Model 
(PBM).  

 
 

1.4.1 Response-Based (RB) Model 
 
This model is the first type of surrogate 

model, 𝑆̃(𝒙, 𝒂) has a remodel function of linear 
(Eq. 43) form and is written respectively as  

 𝑆̃(𝒙, 𝒂)  = 𝑎0 + 𝑎1𝑓(𝒙), (43) 

 
1.4.2 Variable-Based (VB) Model 
 
In the second type model, the tuning 
coefficients, 𝒂 are attached to the design 
variables and become a tuning 
function, 𝑡(𝒙, 𝒂). The formulation of the 
remodel function is expressed as 
 

 𝑆̃(𝒙, 𝒂) = 𝑓(𝒙) +
𝑡(𝒙, 𝒂),    𝑡(𝒙, 𝒂) = 𝑎0 +
∑ 𝑥𝑖𝑎𝑖
𝑁
𝑖=1 ,  

(44) 

 
Both equations, Eq. 43 and Eq. 44 are 
intrinsically non-linear model. 
 
 
1.4.3 Parameter-Based (PB) Model 
 
This routine uses any physical parameters in the 
low- and high- fidelity models as the tuning 
coefficient, 𝒂. This research selects sprung mass 
as the tuning coefficient.  The main reason of 
introducing this model is to investigate its 
performance as a surrogate model for the 
suspension system design.  This model is 
mathematically stated as 
 

 
𝑆̃(𝒙, 𝒂) ≡

𝑓(𝒙, 𝒂) . 
(45) 

 
 
1.5 Searching the Optimal Tuning Coefficients 
 
The optimal tuning coefficients for the 
surrogate model of RBM and VBM is searched 
by minimizing the sum of the squares of 
deviation, 𝑑 between the surrogate model and 
the high-fidelity model. This searching is an 
optimization problem. Mathematically, the 
objective function is stated as  
 

 
Minimize:     𝑑 =∑(𝑆̃(𝒙, 𝒂)𝑖

𝑛

𝑖=1

− 𝐹̃(𝒙)𝑖)
2

 

(46) 

 
where, 𝑛 is the number of sampling points and 
𝑖 the sampling point number. Any optimization 
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methods can be used to search the optimal 
solution of Eq. 46 [23].  
 
 
1.6 Accuracy Evaluation of The Surrogate 
Model  
 
Depending on a single statistical metric such as 
R-squared are not enough and often lead to 
misinterpretation of model accuracy evaluation 
[31].  [32], [33] and [34] in their works had 
employed three statistical metrics, which are R-
Squared (𝑅²), Root Mean Squared Error 
(𝑅𝑀𝑆𝐸), and Maximum Absolute Error (𝑀𝐴𝐸) 
to evaluate the accuracy of the surrogate 
model. 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 measure the global 
response accuracy and the local response 
accuracy of the model, respectively. 
Meanwhile, R-Squared indicates the intimacy 
metric between the surrogate model and the 
high-fidelity model. The formulas of 𝑅², 𝑀𝐴𝐸, 
and 𝑅𝑀𝑆𝐸 are defined as  
 

 

𝑅2

= 1

−
∑ (𝑆̃(𝒙, 𝒂)𝑖 − 𝐹̃(𝒙)𝑖)

2𝑛
𝑖=1

∑ (𝐹̅(𝒙) − 𝐹̃(𝒙)𝑖)
2𝑛

𝑖=1

, 
 (47) 

 
𝑀𝐴𝐸 = max

𝑖=1,…,𝑛
|𝑆̃(𝒙, 𝒂)𝑖

− 𝐹̃(𝒙)𝑖|, 
and (48) 

 

𝑅𝑀𝑆𝐸

= √
1

𝑛
  ∑(𝑆̃(𝒙, 𝒂)𝑖 − 𝐹̃(𝒙)𝑖)

2
𝑛

𝑖=1

. 
 (49) 

 
where, 𝐹̅(𝑥) is the average value of the high-
fidelity model response. The lowest MAE and 
RMSE values but highest in R-Squared value 
indicate the best tuning results for the 
surrogate model. 
 
 

RESULTS AND DISCUSSION 
  

The architecture of LF model, HF model, 
and surrogate models had been constructed in 
such a way all simulations can take place using 
the same platform which in this case is in 
Matlab/Simulink. Each model had run for 400 

sampling nodes simulations. As mentioned in 
Section 5, BAcc, DTL and SWS were three 
criteria for suspension system design 
assessment. In this paper, there were three 
surrogate models have been formulated which 
were called as RB, VB, and PB model. The final 
performance results for each surrogate model 
were reported through the medium of graph 
figures and tabular statistical data. Table 3 and 
Figure 4, Table 4 and Figure 5, and Table 5 and 
Figure 6 show three pair results for surrogate 
model of RB, VB, and PB models compared to LF 
and HF models.  

Through Figure 4 to Figure 6, it can be 
visualized that the responses produced by LF 
model (grey surface) had dissimilar trend 
compared to HF model (light grey surface) 
particularly in terms of their respective 
magnitudes. The orientation of each respective 
response surfaces was also different between 
these two models. This show that LF model and 
HF model have different capability. In fact, 
these substantial differences have inspired the 
author to conduct this research.  This research 
is an investigation to find out the feasibility of 
the LF model to be tuned so as to achieve 
equivalent output as the HF model. The tuned 
LF model is called as surrogate model.  

Table 3 and Figure 4 are a pair of result for 
assessing the surrogate model’s performance of 
the RB model. The statistical measure results, 
the MAE and RMSE, and the R2 values show 
close to the best values of 0 (zero) and 1 (one) 
respectively for all the suspension design 
criteria, i.e., BAcc, DTL, and SWS. These indicate 
that the difference between RB model and HF 
model had a very low-level variance. 
Furthermore, the graphical results in Figure 4 
were found to agree also with those results in 
Table 3. All the surface responses of BAcc, DTL, 
and SWS for surrogate model had very close 
trend to HF model. This simply put the RB model 
as a useful surrogate model. 

The second surrogate model in this 
feasibility study is VB model. Table 4 reveals the 
statistical summary of VB model’s performance.  
The summary indicates that all suspension 
system criteria have almost 100% match to HF 
model. This can be also visually observed from 
Figure 5. Similarly, VB model is also a useful 
surrogate model. 
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 Sprung mass, Ms is used as the tuning 
coefficient in the PB model. By inspecting Figure 
6 and Table 5, the PB model capable to generate 
equivalent response for BAcc only.  The initial 
sprung mass, Ms of 317.5 kg is reduced to 195.4 
kg in order to yield higher BAcc of LF model. 
Furthermore, PB model has also failed to 
capture the HF responses for SWS and DTL. It 
was found that this surrogate model type 
cannot be trusted since it will easily provide 
incorrect interpretation of real behaviour of the 
suspension system.  
 

 
CONCLUSION 
 
This research has introducing three approaches 
in deriving surrogate model. The models are 
called as RB model, VB model, and PB model. 
Among these three models, the PB model is the 
most unreliable model. The main flaw on PB 
model is the changing of parameter could lead 
to unrealistic behaviour of suspension system in 
even though the gap between surrogate model 
and HF model is close as indicated in Figure 6. 
MAE, RMSE, and R2 were three key 
performance indicators (KPIs) used in 
evaluating the variance performance of 
surrogate model relative to HF model. Based on 
KPIs values and graph visualisation, the RB and 
VB models were considered as two useful 
surrogate models. Moreover, the VB model 
gave slightly more satisfy as surrogate model 
than the RB model. As a conclusion, the attempt 
to conduct a feasibility study of surrogate 
model for vehicle suspension system has 
successfully achieved. 
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Table 3: The accuracy performance of RB model 

 
KEY PERFORMANCE INDICATORS 

BAcc DTL SWS 

Assessment 
Criteria 

MAE 0.0879 
4.1415 × 

10-3 
3.4127 × 10-4 

RMSE 0.0351 
2.2850 × 

10-3 
1.7969 × 10-4 

R2 0.9218 0.9970 0.9526 

Tuning 
Parameters 

a0 
-

0.1774 
109.4078 0.0010 

a1 1.8149 0.7473 0.9999 

 
 

(a) 

 
(b) 
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(c) 

Figure 4: RB model’s responses of (a) BAcc, (b) DTL, and 
(c) SWS. All diagrams have three surfaces. Yellow surface 
is low-fidelity model’s response, cyan surface is high-
fidelity model’s response, and white surface is surrogate 
model’s response. 

 
Table 4: The accuracy performance of VB model 

 

KEY PERFORMANCE 
INDICATORS 

BAcc DTL SWS 

Assessment 
Criteria 

MAE 0.0064 
7.8310 
× 10-3 

1.5637 
× 10-4 

RMSE 0.0026 
2.9671 
× 10-3 

7.1046 
× 10-5 

R2 0.9996 0.9950 0.9926 

Tuning 
Parameters 

a0 0.3251 
-

61.1685 
0.0019 

a1 
-

2.7149e-
06 

1.8652e-
04 

-
4.5169e-

08 

a2 
1.4559e-

04 
0.0322 

5.0812e-
09 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 5: VB model’s responses of (a) BAcc, (b) DTL, and 
(c) SWS. All diagrams have three surfaces. Yellow surface 
is low-fidelity model’s response, cyan surface is high-
fidelity model’s response, and white surface is surrogate 
model’s response. 

 
Table 5: The accuracy performance of PB model 

 
KEY PERFORMANCE INDICATORS 

BAcc DTL SWS 

Assessment 
Criteria 

MAE 0.0731 
38.5780 
× 10-3 

7.5847 × 10-

4 

RMSE 0.0295 
16.7876 
× 10-3 

3.0715 × 10-

4 

R2 0.9475 0.8476 0.8684 

Tuning 
Parameters 

Ms 
(kg) 

195.4 263.3 451.6 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6: PB model’s responses of (a) BAcc, (b) DTL, and 
(c) SWS. Yellow surface is low-fidelity model’s response, 
cyan surface is high-fidelity model’s response, and white 
surface is surrogate model’s response. 

 
 
Nomenclature 
𝐶𝑠 damping rate (Ns/m) 
𝐶𝑠𝑓𝑟  damping rate for front right end (Ns/m) 
𝐶𝑠𝑓𝑙 damping rate for front left end (Ns/m) 

𝐶𝑠𝑟𝑟 damping rate for rear right end (Ns/m) 
𝐶𝑠𝑟𝑙 damping rate for rear left end (Ns/m) 
𝐾𝑠 spring stiffness (N/m) 
𝐾𝑠𝑓𝑟  spring stiffness for front right end (N/m) 

𝐾𝑠𝑓𝑙  spring stiffness for front left end (N/m) 

𝐾𝑠𝑟𝑟  spring stiffness for rear right end (N/m) 
𝐾𝑠𝑟𝑙 spring stiffness for rear left end (N/m) 
𝐾𝑡  tire stiffness (N/m) 
𝐾𝑡𝑓𝑟  tire stiffness for front right end (N/m) 

𝐾𝑡𝑓𝑙  tire stiffness for front left end (N/m) 

𝐾𝑡𝑟𝑟 tire stiffness for rear right end (N/m) 
𝐾𝑡𝑟𝑙 tire stiffness for rear left end (N/m) 
𝑀𝑠 sprung mass (kg) 
𝑀𝑏 body mass (kg) 
𝑀𝑢 unsprung mass (kg) 
𝑀𝑢𝑓𝑟  unsprung mass for front right end (kg) 

𝑀𝑢𝑓𝑙 unsprung mass for front left end (kg) 

𝑀𝑢𝑟𝑟 unsprung mass for rear right end (kg) 
𝑀𝑢𝑟𝑙 unsprung mass for rear left end (kg) 
𝑍𝑏 body displacement (m) 
𝑍𝑟  road displacement (m) 
𝑍𝑟𝑓𝑟  road displacement at front right end (m) 

𝑍𝑟𝑓𝑙 road displacement at front left end (m) 

𝑍𝑟𝑟𝑟 road displacement at rear right end (m) 
𝑍𝑟𝑟𝑙 road displacement at rear left end (m) 
𝑍𝑠 sprung displacement (m) 
𝑍𝑠𝑓𝑟  sprung displacement at front right end (m) 

𝑍𝑠𝑓𝑙  sprung displacement at front left end (m) 

𝑍𝑠𝑟𝑟  sprung displacement at rear right end (m) 
𝑍𝑠𝑟𝑙 sprung displacement at rear left end (m) 
𝑍𝑢 unsprung displacement (m) 
𝑍𝑢𝑓𝑟  unsprung displacement at front right end (m) 

𝑍𝑢𝑓𝑙  unsprung displacement at front left end (m) 

𝑍𝑢𝑟𝑟  unsprung displacement at rear right end (m) 
𝑍𝑢𝑟𝑙 unsprung displacement at rear left end (m) 
𝜃𝑏  rolling angle (rad) 
𝜙 pitching angle (rad) 
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